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Abstract

Intellectual Property (IP) libraries are commonly used by hardware designers to increase produc-
tivity and reduce the time-to-market. These static IP libraries do not allow the designers flexibility in
customizing trade-offs. We propose a parameterized DSP IP generator that allows designers to specify
the cost/performance tradeoff. We present a prototype implementation of a parameterized DFT generator
and compare our generated DFT with Xilinx Logicore’s DFT IP Core. Our results show that we generate
high-quality DFT blocks that match the performance and cost of Xilinx LogiCore DFT implementations.
More importantly, we show that our parameterized design generation yields customized DFT blocks over
a range of different performance/cost tradeoff points.

Introduction. We propose a parameterized IP generator as an alternative to static IP blocks. The genera-
tor is tailored for application-specific tradeoffs, such as area, performance, numerical accuracy and power
consumption. Our approach preserves the advantage of using static IP blocks, while allowing the design-
ers more control over the design. This generator can be used together with a search engine to find the
best possible implementation for a given set of constraints. Here we present our experience in developing
a parameterized generator for discrete Fourier transform (DFT). A full description of this work has been
submitted to a conference.
Generation of Discrete Fourier Transform. Our DFT generator is based on the Pease algorithm for the
DFT, which we express in a formula notation as

F2n = {
n−1
∏

i=0

L2n

2 (I2n−1 ⊗F2) Tn−i}R2n , F2 =
(

1 1
1 −1

)

(1)

where ‘I’ denotes an identity matrix, ‘⊗’ the Kronecker product of matrices, ’T’ denotes the Twiddle factors,
‘R’ denotes the bit reversal, and ‘L’ a stride permutation. Figure 1 shows a dataflow representation of (1)
for n = 3. This formula-derived dataflow graph can be directly mapped to a combinational circuit where the
implementation cost is approximately n log(n)/2 C blocks, plus the routing cost of realizing the Ln

2 wire
permutations. The cost of a combinational implementation is usually very large and unrealistic to implement
for large n. A common practical DFT implementation requires a sequential implementation where the logic
resources, e.g., C, are reused multiple times by horizontal folding or vertical folding. Figure 1 shows, for
n = 3, block diagrams of a horizontally folded DFT (middle) and a horizontally and vertically folded DFT
(right).

Our DFT generator accepts as input parameters the DFT size, the data format (i.e., fixed-point number
range and precision), and a design parameter p that controls the degree of parallelism in the generated imple-
mentation. This freedom allows the designer to select a custom tradeoff between minimizing cost (i.e., area
and power) and maximizing performance (i.e., latency and throughput). Our DFT generator can also accept
target-specific parameters to reflect the designer’s preference for different classes of resources. A parameter
that our DFT generator allows is a relative value for a Block Select-RAM (BRAM, a specialized memory
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Figure 1: Pease DFT algorithm. From left to right: completely flattened, horizontally folded, fully horizon-
tally and vertically folded.
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Figure 2: Synthesis results for F64: slice utilization, BRAM utilization, and transform throughput (trans-
form/second, overlapping loading and unloading).

Table 1: Parameters for DFT IP Generator and the corresponding effects on logic slices, BRAM and through-
put as each parameter increases

Parameter Logic Slices BRAM Throughput
n (transform size) ⇑ ⇑ ⇓

p (parallelism) ⇑ ⇑ ⇑

fixed-point number range and precision ⇑ ⇑ −

relative value of BRAM cost ⇓ ⇑ −

primitive) in terms of slices (generic logic building blocks). The DFT generator takes this preference into
account to balance resource minimization across BRAM and logic slice utilization. Table 1 lists some cur-
rent parameters that our DFT generator currently supports, and the corresponding effects on BRAM, logic
slice utilization and throughput. The output of our generator is an RTL-level Verilog description of the
desired DFT implementation.
Sample Result. For n = 6, our DFT generator produces 6 implementations representing different trade-
offs between the different design goals and constraints. Figure 2 shows the resource utilization, in terms of
slices and BRAM, and throughput over these 6 design choices, compared against the latest Xilinx LogiCore
DFT implementations. The generated DFT implementations are synthesized for the Xilinx Virtex2-Pro
XC2VP100-6FF1696 FPGA using Xilinx ISE version 6.1.03i. To show the effects of our Xilinx Virtex2-
Pro-specific parameters, each graph reports two separate results corresponding to the extreme tradeoff points
of slices and BRAM utilization. They are 1) minimize the use of slices; and 2) minimize the use of BRAMs.
As the graphs show, our minimum resource design points (i.e., p = 1 or p = 2) occupy a similar tradeoff
space as the Xilinx LogiCore DFT implementations. By varying p and the relative value of BRAM, the
designer can customize the tradeoff function between performance, slice, and BRAM usage. For larger p
values, our generated DFT implementations can offer a higher throughput at the cost of an increased resource
requirements.

2



Discrete Fourier Transform 
IP Generator

Grace Nordin, James C. Hoe, and Markus Püschel
Dept. of Electrical and Computer Engineering

Carnegie Mellon University



HPEC 2004, Slide 2Nordin, Hoe, Püschel, CMU/ECE

The Paradox of Reusable IPs
Boon to productivity
- zero effort required
- zero knowledge required
- zero chance to introduce new bugs

Why repeat what is already been done?
Bane to optimality
- finding the right functionality with the right interface
- design tradeoff -- performance, area, power, accuracy.....

Are you getting what you really wanted?

Solution: parameterized automatic IP generators
- zero effort, knowledge or bugs
- allows application specific customization
- facilitates design exploration
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Discrete Fourier Transform IPs
Discrete Fourier Transform (DFT)
- important building block in DSP applications
- numerous design “cores” available

Some commonly supported options in IP libraries
- transform sizes
- number format
- i/o data ordering
- a small number of microarchitecture choices (e.g., min area, 

max speed) 
Customized design tradeoff in our generated IPs
- degree of parallelism in microarchitecture (min ↔ max)
- resource preference (e.g. BRAM vs. LUT in FPGAs)

Extensible to other common linear DSP transforms
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Microarchitecture Parameterization
Resource Parameterization
Experimental Results
Conclusions
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Transforms as Formulas [www.spiral.net]

nDFTTransform parameterized matrix 

( ) ( ) PDFTIDIDFTDFT mnmnnm ⋅⊗⋅⋅⊗→Recursion
• a breakdown strategy 
• product of sparse matrices

( ) ( )( ) PIFIDIFDFT ⋅⊗⊗⋅⋅⊗= L)( 222428

• recursive application of rules
• uniquely defines an algorithm
• efficient representation
• easy manipulation

8DFT

2

Algorithm
As Tree DFT 4DFT

2DFT 2DFT

• few constructs and primitives
• uniquely defines an algorithm
• can be translated into code

Algorithm
As Formula
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Formula to Datapath
Given M • x where M is
- M = A • B apply B, then A
- M = In ⊗ A apply A, n times in parallel
- M = A ⊗ In apply A, n times in parallel

taking inputs at stride n
- M is a permutation permute x
- M is a diagonal scale x
- etc.

(F2⊗I2)4T2(I2⊗F2)L2
4

F2

F2

F2

F2j

formulas are a natural HW description

formulas allow manipulation

formulas can be translated into Verilog
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Pease DFT
Simple regular structure embodied in formula

where

Example
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Pease DFT Example:  DFT8

Repeating column structure ⇒ hardware reuse
with zero perf. penalty
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Horizontally Folded Pease DFT
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V-folding according to p

pmax =n/2=4

pmin =1

Latency =
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V-folding of Stride Permutations 
Stride Permutation

In other words

[Takala, et al. ICASSP’2001]

n
n / 2k-q

1

2k-q

2



HPEC 2004, Slide 14Nordin, Hoe, Püschel, CMU/ECE

V-folding of Stride Permutations 

where   Jm =

[Takala, et al. ICASSP’2001]
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FIFO: BRAM vs. CLBs
J-matrix FIFOs are a significant part of logic resources
FIFOs can be constructed from
- shift registers using CLB slices, or
- circular buffers using CLB slices (distributed RAM), or
- circular buffers using BRAM memory macros

“Exchange rate” of shift registers vs. circular buffer

Let user set the context-dependent break-even point

performance 
difference 
is negligible

FIFO size
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Xilinx LogiCore Library
DFT based on Radix-4 Cooley-Tukey
- range of sizes
- streaming vs. burst I/O
- fixed-point scaling modes
- in/out data ordering

Evaluation
- DFT of 64, 1024 and 2048
- burst I/O interface, bit-reversed-ordering
- Xilinx Virtex2-Pro XC2VP100-6
- Xilinx ISE version 6.1.03i
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DFT64



HPEC 2004, Slide 19Nordin, Hoe, Püschel, CMU/ECE

DFT1024 and DFT2048
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Related Work
Kumhom, Johnson, Nagvajara, ASIC/SOC 2000
- universal FFT processor microarchitecture based on 

processing elements interconnected by on-chip 
reconfigurable network

- microarchitecture is scalable in the number of elements
- supports both Cooley Tukey and Pease

Choi, Scrofano, Prasanna, Jang, FPGA’2003
- mapped radix-4 Cooley-Tukey algorithm onto log(n)/2 DFT4

primitives
- scalable datapath between 1 element and 4 elements at a 

time
- show energy and performance improvements from scaling
- does not show same tradeoff point as Xilinx can be covered
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Conclusions
Parameterized IP Generator
- easy to use
- allows customization

Prototype implementation of DFT generator
- parameterized performance/cost tradeoff
- parameterized resource usage preference

Key results
- generator is efficient, i.e., the Xilinx design point can be 

matched
- customization allows advantage in a chosen dimension 

relative to Xilinx DFT cores
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